関連論文の解説

総説論文 ※赤字は重要論文です


16. 小林久隆
光免疫療法のがん免疫誘導を中心とした総説論文
医学のあゆみ 2022; 281(5): 538-542.


15. Furumoto H, Kato T, Wakiyama H, Furusawa A, Choyke PL, Kobayashi H.
Endoscopic applications of near-infrared photoimmunotherapy (NIR-PIT) in cancers of the digestive and respiratory tracts.
Biomedicines 2022 ;10(4):846. doi: 10.3390/biomedicines10040846
上部消化管と肺気管支に起こるがんに対する近赤外光線免疫療法の応用できる範囲に関する総説

14. Kobayashi H, Choyke PL.
Future applications and prospects of NIR-PIT; benefits and differences when compared to PDT and PTT
Immunotherapy 2021 (in press)
これまでの光力学療法や光温熱療法との違いにフォーカスしたコメンタリー

13. Maruoka Y, Wakiyama H, Choyke PL, Kobayashi H.
Near infrared photoimmunotherapy for cancers: a translational perspective. EBioMedicine 2021 ;70:103501.
光免疫療法の臨床応用への展望を描いた総説論文

12. Kato T, Wakiyama H, Furusawa A, Chyke PL, Kobayashi H.
Near infrared photoimmunotherapy; a review of targets for cancer therapy.
Cancers 2021, 13(11), 2535
光免疫療法今後の適応拡大の可能性を前臨床の実験から抗体がつくがん特異抗原分子別にまとめた総説

11. Kobayashi H
Expanding the application of cancer near-infrared photoimmunotherapy (Commentary) EBioMedicine 2021 (in press)
光免疫療法今後の適応拡大への期待(コメンタリー)

10. Wakiyama H, Kato T, Furusawa A, Chyke PL, Kobayashi H.
Near infrared photoimmunotherapy of cancer; possible clinical applications.
Nanophotonics 2021 (in press)
光免疫療法今後の適応拡大の可能性を前臨床の実験から腫瘍発生臓器別にまとめた総説

9. 小林久隆
がんの近赤外光線免疫療法の開発経緯と今後の展望―外科治療との関わりも含めて―
日本外科学会会誌. 2020; 121(5): 535-539.

8. 小林久隆
がんの近赤外光線免疫療法
Skin Cancer 2019; 34(2): 71-77.

7. 小林久隆
がんの近赤外光線免疫療法 : 既存の光線力学療法との違いを中心に
医学のあゆみ 2016; 258(11): 1049-1053.

6. 小林久隆
近赤外光線免疫療法による新規がん治療
薬剤学 2016; 76 (3): 172-176.

5. 小林久隆
特異性を重視した新たな癌の分子イメージングと近赤外光線免疫療法 Drug Delivery System (DDS) 2014; 29(4): 274-284.

4. Kobayashi H, Watanabe R, Choyke PL.
Delivery of nano-sized drugs in cancer relaying on conventional and improved enhanced permeability and retention (EPR) effects. (review)
Theranostics 2014; 4(1):81-89.

3. Kobayashi H, Furusawa A, Rosenburg A, Choyke PL.
Near-infrared photoimmunotherapy of cancer: a new approach that kills cancer cells and enhances anti-cancer host immunity.
International Immunology 2021; 33(1):7-15. doi.org/10.1093/intimm/dxaa037

光免疫療法の免疫学的背景を解説

2. Kobayashi H, Griffiths GL, Choyke PL.
Near Infrared Photoimmunotherapy: Photo-Activatable Antibody-Drug Conjugates (ADCs).
Bioconjugate Chemistry 2020:31(1):28-36. (Cover article)
抗体とIR700結合体という点から見た抗体治療における光免疫療法の解説

1. Kobayashi H, Choyke PL.
Near infrared photoimmunotherapy of cancer.
Accounts of Chemical Research 2019;52(8):2332-2339. doi:10.1021/acs.accounts.9b00273.

光免疫療法の理論を含む解説


原著論文

121. Wakiyama H, Furusawa A, Okada R, Inagaki F, Kato T, Furumoto H, Fukushima H, Okuyama S, Choyke PL, Kobayashi H.
Treg-dominant tumor microenvironment is responsible for hyperprogressive disease after PD-1 blockade therapy
Cancer Immunology Research 2022 in press
(光免疫療法の手法を用いてチェックポイント阻害剤後に起こるハイパープロジェクション病の原因を解明)

120. Kato T, Furusawa A, Okada R, Inagaki F, Wakiyama H, Furumoto H, Fukushima H, Okuyama S, Choyke PL, Kobayashi H.
Near-infrared photoimmunotherapy targeting podoplanin-expressing cancer cells and cancer-associated fibroblasts
Molecular Cancer Therapeutics 2022 in press
(新規標的分子ポドプラニンは、がん細胞を殺すと同時に腫瘍浸潤性線維芽細胞を殺して免疫を上げることができる)

119. Inagaki FF, Kato T, Furusawa A, Okada R, Wakiyama H, Furumoto H, Okuyama S, Choyke PL, Kobayashi H.
Disialoganglioside GD2-targeted near-infrared photoimmunotherapy (NIR-PIT) in tumors of neuroectodermal origin.
Pharmaceutics 2022 in press
(新規標的分子GD2は光免疫療法に使用可能な分子である)

118. Jin J, Barnett JD, Krishnamachary B, Mironchik Y, Luo C, Kobayashi H, Bhujwalla ZM.
Targeting cancer associated fibroblasts by photoimmunotheranostics of fibroblast activation protein-α
Cancer Science 2022 in press
(光免疫療法で腫瘍浸潤性線維芽細胞を殺して免疫を上げることができる)

117. Furumoto H, Okada R, Kato T, Wakiyama H, Inagaki F, Fukushima H, Okuyama S, Furusawa A, Choyke PL, Kobayashi H.
Optimal light dose for hEGFR-targeted near-infrared photoimmunotherapy.
Cancers 2022;14(16):4042. doi: 10.3390/cancers14164042.
(光免疫療法の最適な光の量の再検討:免疫のあるマウスでも)

116. Barnett JD, Jin J, Penet M-F, Kobayashi H, Bhujwalla ZM.
Phototheranostics of splenic myeloid-derived suppressor cells and its impact on spleen metabolism in tumor-bearing mice.
Cancers 2022;14(15):3578. doi: 10.3390/cancers14153578.
(光免疫療法の手法で骨髄由来抑制細胞を減らすことができる)

115. Takahashi K, Yasui H, Taki S, Shimizu M, Koike C, Taki K, Hiroshi Y, Baba Y, Kobayashi H, Sato K.
Near-infrared-induced drug release from antibody-drug double conjugates exerts a cytotoxic photo-bystander effect.
Bioengineering and Translational Medicine 2022 ;7(3):e10388. doi: 10.1002/btm2.10388.
(光免疫療法と同時に抗がん剤の放出をできる新手法)

114. Mitsunaga M, Ito K, Nishimura T, Miyata H, Miyakawa K, Morita T, Ryo A, Kobayashi H, Mizunoe Y, Iwase T.
Evidence of a targeted antimicrobial therapeutic strategy against different bacterial, fungal, and viral pathogens.
Commission Biology 2022 ;5(1):647. doi: 10.1038/s42003-022-03586-4.
(光免疫療法がバクテリアやウイルスの治療にも役立つ)

113. Kato T, Okada R, Furusawa A, Wakiyama H, Furumoto H, Fukushima H, Okuyama S, Choyke PL, Kobayashi H.
A comparison of the effectiveness of IgG antibody vs. F(ab’)2 antibody fragment in CTLA4-targeted near-infrared photoimmunotherapy Molecular Pharmaceutics 2022 ;19(10):3600-3611. doi: 10.1021/acs.molpharmaceut.2c00242.
(CTLA4標的光免疫療法にはF(ab’)2 よりIgGの方が良い)

112. Fukushima H, Kato T, Furusawa A, Okada R, Wakiyama H, Furumoto H, Okuyama S, Kondo E, Choyke PL, Kobayashi H.
Intercellular adhesion molecule-1 (ICAM-1)-targeted near-infrared photoimmunotherapy in the treatment of triple-negative breast cancer.
Cancer Science 2022 ;113(9):3180-3192. doi: 10.1111/cas.15466.
(新規標的分子ICAM1が有効なターゲットであることを示した論文)

111. Fukushima H, Matikonda SS, Usama SM, Furusawa A, Kato T, Štacková L, Klán P, Kobayashi H, Schnermann MJ.
Cell labeling with spatiotemporal control using cyanine phototruncation
Journal of the American Chemical Society 2022 ;144(25):11075-11080. doi: 10.1021/jacs.2c02962.
(細胞の体内移動を観察する新手法。光免疫療法後の免疫解析のための新手法)

110. Moriya T, Hashimoto M, Matsushita H, Masuyama S, Yoshida R, Okada R, Furusawa A, Fujimura D, Wakiyama H, Kato T, Choyke PL, Kusumoto Y, Chtanova T, Kobayashi H, Tomura M.
Near-infrared photoimmunotherapy induced tumor cell death enhances tumor dendritic cell migration.
Cancer Immunology Immunotherapy 2022 in press

109. Wakiyama H, Furusawa A, Okada R, Inagaki F, Kato T, Furumoto H, Fukushima H, Okuyama S, Choyke PL, Kobayashi H.
Opening up new VISTAs: V-domain Immunoglobulin Suppressor of T cell Activation (VISTA) targeted near-infrared photoimmunotherapy (NIR-PIT) for enhancing host immunity against cancers.
Cancer Immunology Immunotherapy 2022 in press

108. Tazawa H, Shigeyasu K, Noma K, Kagawa S, Kobayashi H, Imamura T, Fujiwara T.
Tumor-targeted fluorescence imaging systems for diagnosis and treatment of cancer.
Cancer Science 2022 ;113(6):1919-1929. doi: 10.1111/cas.15369.

107. Jin J, Krishnamachary B, Mironchik Y, Sivakumar I, Wildes F, Barnett JD, Hung C-F, Nimmagadda S, Kobayashi H, Bhujwalla ZM, Penet M-F.
PD-L1 Near Infrared Photoimmunotherapy of Ovarian Cancer Model
Cancers 2022 ;14(3):619. doi: 10.3390/cancers14030619.

106. Furusawa A, Okada R, Inagaki F, Wakiyama H, Kato T, Choyke PL, Kobayashi H
CD29 targeted near-infrared photoimmunotherapy (NIR-PIT) in the treatment of a pigmented melanoma model
Oncoimmunology 2022 ;11(1):2019922. doi: 10.1080/2162402X.2021.2019922

105. Okada R, Kato T, Furusawa A, Inagaki F, Wakiyama H, Fujimura D, Okuyama S, Furumoto H, Fukushima H, Choyke PL, Kobayashi H.
Selection of antibody and light exposure regimens alters therapeutic effects of EGFR-targeted near-infrared photoimmunotherapy.
Cancer Immunology Immunotherapy 2022 ;71(8):1877-1887. doi: 10.1007/s00262-021-03124-x.

104. Kato T, Okada R, Goto Y, Furusawa A, Inagaki F, Wakiyama H, Furumoto H, Daar D, Turkbey B, Choyke PL, Takakura H, Inanami O, Ogawa M, Kobayashi H.
Electron Donors rather than Reactive Oxygen Species Need for Therapeutic Photochemical Reaction of Near Infrared Photoimmunotherapy.
ACS Pharmacology and Translational Science 2021; 4(5): 1689–1701.

103. Kato T, Okada R, Furusawa A, Inagaki F, Wakiyama H, Furumoto H, Okuyama S, Fukushima H, Choyke PL, Kobayashi H.
Simultaneously combined cancer cell- and CTLA4-targeted NIR-PIT causes a synergistic treatment effect in syngeneic mouse models Molecular Cancer Therapeutics 2021;20(11):2262-2273.

NEW
102. Furusawa A, Choyke PL, Kobayashi H.
NIR-PIT; Will it become a standard cancer treatment?
Frontiers in Oncology 2022 ;12:1008162. doi: 10.3389/fonc.2022.1008162.

NEW
101. Fukushima H, Turkbey B, Pinto P, Furusawa A, Choyke PL, Kobayashi H.
Near-infrared photoimmunotherapy (NIR-PIT) in urologic cancers.
Cancers 2022 ;14(12):2996. doi: 10.3390/cancers14122996.

NEW
100. Furumoto H, Kato T, Wakiyama H, Furusawa A, Choyke PL, Kobayashi H.
Endoscopic applications of near-infrared photoimmunotherapy (NIR-PIT) in cancers of the digestive and respiratory tracts.
Biomedicines 2022 ;10(4):846. doi: 10.3390/biomedicines10040846

NEW
99. Kobayashi H, Choyke PL.
Future applications and prospects of NIR-PIT; benefits and differences when compared to PDT and PTT
Immunotherapy 2021;13(16):1305-1307.

NEW
98. Maruoka Y, Wakiyama H, Choyke PL, Kobayashi H.
Near infrared photoimmunotherapy for cancers: a translational perspective.
EBioMedicine 2021 ;70:103501.

NEW
97. Kato T, Wakiyama H, Furusawa A, Chyke PL, Kobayashi H.
Near infrared photoimmunotherapy; a review of targets for cancer therapy.
Cancers 2021;13(11):2535.

NEW
96. Kobayashi H.
Expanding the application of cancer near-infrared photoimmunotherapy (Commentary)
EBioMedicine 2021; 68: 103416. doi.org/10.1016/j.ebiom.2021.103416

NEW
95. Wakiyama H, Kato T, Furusawa A, Choyke PL, Kobayashi H.
Near infrared photoimmunotherapy of cancer; possible clinical applications.
Nanophotonics 2021; 10(12): 3135–3151.


94. Moriya T, Hashimoto M, Matsushita H, Masuyama S, Yoshida R, Okada R, Furusawa A, Fujimura D, Wakiyama H, Kato T, Choyke PL, Kusumoto Y, Chtanova T, Kobayashi H, Tomura M.
Near-infrared photoimmunotherapy induced tumor cell death enhances tumor dendritic cell migration.
Cancer Immunology Immunotherapy 2022 in press
近赤外光線免疫療法を行うと腫瘍からの樹状細胞の所属リンパ節への移動が活性化するので、免疫をより強くできる。


93. Wakiyama H, Furusawa A, Okada R, Inagaki F, Kato T, Furumoto H, Fukushima H, Okuyama S, Choyke PL, Kobayashi H.
Opening up NEW VISTAs: V-domain Immunoglobulin Suppressor of T cell Activation (VISTA) targeted near-infrared photoimmunotherapy (NIR-PIT) for enhancing host immunity against cancers.
Cancer Immunology Immunotherapy 2022 in press
新規の標的であるVISTA分子が近赤外光線免疫療法の免疫抑制細胞の標的として有望であることの証明


92. Tazawa H, Shigeyasu K, Noma K, Kagawa S, Kobayashi H, Imamura T, Fujiwara T.
Tumor-targeted fluorescence imaging systems for diagnosis and treatment of cancer.
Cancer Science 2022 in press


91. Jin J, Krishnamachary B, Mironchik Y, Sivakumar I, Wildes F, Barnett JD, Hung C-F, Nimmagadda S, Kobayashi H, Bhujwalla ZM, Penet M-F. PD-L1 Near Infrared Photoimmunotherapy of Ovarian Cancer Model
Cancers 2022 ;14(3):619. doi: 10.3390/cancers14030619.
新規の標的であるPD-L1分子が近赤外光線免疫療法のがん細胞の標的として有望であることの証明


90. Furusawa A, Okada R, Inagaki F, Wakiyama H, Kato T, Choyke PL, Kobayashi H
CD29 targeted near-infrared photoimmunotherapy (NIR-PIT) in the treatment of a pigmented melanoma model
Oncoimmunology 2022 ;11(1):2019922. doi: 10.1080/2162402X.2021.2019922
新規の標的であるCD29分子が近赤外光線免疫療法のがん細胞の標的として有望であることの証明


89. Okada R, Kato T, Furusawa A, Inagaki F, Wakiyama H, Fujimura D, Okuyama S, Furumoto H, Fukushima H, Choyke PL, Kobayashi H.
Selection of antibody and light exposure regimens alters therapeutic effects of EGFR-targeted near-infrared photoimmunotherapy.
Cancer Immunology Immunotherapy 2022 in press
EGFRを標的にした近赤外光線免疫療法での抗体の比較を免疫のあるマウスで行った実験結果


88. Kato T, Okada R, Goto Y, Furusawa A, Inagaki F, Wakiyama H, Furumoto H, Daar D, Turkbey B, Choyke PL, Takakura H, Inanami O, Ogawa M, Kobayashi H.
Electron Donors rather than Reactive Oxygen Species Need for Therapeutic Photochemical Reaction of Near Infrared Photoimmunotherapy.
ACS Pharmacology and Translational Science 2021 in press
光免疫療法の光化学反応の機序の解明とそこから発見したビタミンCの投与で治療効果を損なうことなく光免疫療法後の炎症とそれに伴う浮腫を抑えることができることを証明した

87. Kato T, Okada R, Furusawa A, Inagaki F, Wakiyama H, Furumoto H, Okuyama S, Fukushima H, Choyke PL, Kobayashi H.
Simultaneously combined cancer cell- and CTLA4-targeted NIR-PIT causes a synergistic treatment effect in syngeneic mouse models
Molecular Cancer Therapeutics 2021 in press
がん細胞を標的にした光免疫療法とCTLA-4をターゲットにした免疫増強を目指した光免疫療法のコンビネーション治療

86. Okada R, Furusawa A, Inagaki F, Wakiyama H, Kato T, Okuyama S, Furumoto H, Fukushima H, Choyke PL, Kobayashi H.
Endoscopic Near-infrared Photoimmunotherapy in an Orthotopic Head and Neck Cancer Model.
Cancer Science 2021; 102(8): 3041-3049.
免疫の正常なマウスでの頭頚部腫瘍に対する内視鏡下の光免疫療法

85. Okuyama S, Fujimura D, Inagaki F, Okada R, Maruoka Y, Wakiyama H, Kato T, Furusawa A, Choyke PL, Kobayashi H.
Real-time IR700 fluorescence imaging during near-infrared photoimmunotherapy using a clinically-approved camera for indocyanine green.
Cancer Diagnosis and Prognosis 2021; 1(2): 29-34.
島津製の近赤外光カメラ(Lightvision/Illumivision)を用いると光免疫療法最中に腫瘍を観察することができ、また蛍光信号の減衰から治療の終了の目安を決めることができる

84. Okada R, Furusawa A, Vermeer DW, Inagaki F, Wakiyama H, Kato T, Nagaya T, Choyke PL, Spanos WC, Allen CT, Kobayashi H
Near-Infrared Photoimmunotherapy Targeting Human-EGFR in a Mouse Tumor Model Simulating Current and Future Clinical Trials.
EBioMedicine 2021; 67: 103345.

83. Wu S, Okada R, Liu Y, Feng Y, Yan F, Wang C, Li H, Chen Y, Kobayashi H, Tang Q.
Quantitative analysis of vascular changes during photoimmunotherapy using speckle variance optical coherence tomography (SV-OCT).
Biomedical Optics Express 2021; 12(4): 1804-1820.

82. Okada R, Kato T, Furusawa A, Inagaki F, Wakiyama H, Nagaya T, Choyke PL, Kobayashi H.
Local Depletion of Cytotoxic T-lymphocyte Antigen 4 (CTLA4) Expressing Peritumoral Cells with Near-Infrared Photoimmunotherapy Enhances Host Anti-Tumor Immunity.
Advanced Therapeutics 2021; Article Number: 2000269

免疫チェックポイント分子の一つであるCTLA4を発現している細胞を選択的に狙い撃ちして腫瘍内から取り除く新たなコンセプトの治療法。広いがん腫に有効である新方法。

81. Okada R, Furusawa A, Choyke PL, Kobayashi H.
Quantitative Assessment of the Efficacy of Near-infrared Photoimmunotherapy with Bioluminescence Imaging.
Methods in Molecular Biology 2022; 2525: 3-13. doi: 10.1007/978-1-0716-2473-9_1.
研究室で行う光免疫療法の実験手技を詳細に書いたテクニカルノート

80. Inagaki FF, Fujimura D, Furusawa A, Okada R, Wakiyama H, Kato T, Choyke PL, Kobayashi H.
Fluorescence imaging of tumor-accumulating antibody-IR700 conjugates prior to near infrared photoimmunotherapy (NIR-PIT) using a commercially available camera designed for Indocyanine Green.
Molecular Pharmaceutics 2021; 18(3): 1238-1246.

79. Inagaki FF, Fujimura D, Furusawa A, Okada R, Wakiyama H, Kato T, Choyke PL, Kobayashi H.
Diagnostic imaging in near-infrared photoimmunotherapy using a commercially available camera designed for Indocyanine Green.
Cancer Science 2021; 112(3): 1326-1330
光免疫療法前に治療に関しないレベルの光で腫瘍の範囲を診断することが可能

78. Kurebayashi Y, Olkowski CP, Lane KC, Vasalatiy OV, Xu BC, Okada R, Furusawa A, Choyke PL, Kobayashi H, Sato N.
Rapid depletion of intratumoral regulatory T cells induces synchronized CD8 T and NK cell activation and IFN-gamma-dependent tumor vessel regression.
Cancer Research 2021 in press
制御性T細胞を標的にした光免疫療法では、インターフェロンガンマによる腫瘍内の微小血管の一時的障害がみられる

77. Katsube R, Noma K, Ohara T, Nishiwaki N, Kobayashi T, Komoto S, Sato H, Kashima H, Kato T, Kikuchi S, Tazawa H, Kagawa S, Shirakawa Y, Kobayashi H, Fujiwara T.
Fibroblast activation protein targeted near infrared photoimmunotherapy (NIR PIT) overcomes therapeutic resistance in human esophageal cancer. Scientific Reports 2021 ;11(1):1693. doi: 10.1038/s41598-021-81465-4
腫瘍浸潤性活性型線維芽細胞に対する光免疫療法で抗腫瘍免疫活性増加が得られる

76. Wakiyama H, Furusawa A, Okada R, Inagaki F, Fujimura D, Kato T, Maruoka Y, Choyke PL, Kobayashi H.
Increased immunogenicity of a minimally immunogenic tumor after cancer-targeting near infrared photoimmunotherapy
Cancers 2020; 12(12): 3747. 10.3390/cancers12123747

チェックポイント阻害剤が効かない腫瘍でも光免疫療法のあとにはチェックポイント阻害剤が効いて完治できる

75. Maruoka Y, Furusawa A, Okada R, Inagaki F, Fujimura D, Wakiyama H, Kato T, Nagaya T, Choyke PL, Kobayashi H.
Near-infrared photoimmunotherapy combined with CTLA4 checkpoint blockade in syngeneic mouse cancer models.
Vaccines 2020; 8(3): 528. doi:10.3390/vaccines8030528
がんターゲットの光免疫療法に抗CTLA4抗体をチェックポイント阻害剤として付加すると強力な抗腫瘍免疫が得られる

74. Maruoka Y, Furusawa A, Okada R, Inagaki F, Wakiyama H, Kato T, Nagaya T, Choyke PL, Kobayashi H.
Interleukin-15 after near-infrared photoimmunotherapy (NIR-PIT) enhances T cell response against syngeneic mouse tumors.
Cancers 2020; 12(9): 2575. doi:10.3390/cancers12092575
がんターゲットの光免疫療法にIL15を付加すると強力な抗腫瘍免疫が得られる

73. Fujimura D, Inagaki F, Furusawa A, Okada R, Rosenberg A, Choyke PL, Kobayashi H.
The effect of dye-antibody ratio, light dose and solvent pH on the stability of panitumumab-IR700, a photoimmunotherapy agent.
ACS Medicinal Chemistry Letter 2020; 11(8): 1598–1604.
抗体IR700の化学的光学的安定性

72. Rosenberg A, Inagaki F, KatoT, Okada R, Wakiyama H, Furusawa A, Choyke PL, Kobayashi H.
Wound Healing after Excision of Subcutaneous Tumors Treated with Near Infrared Photoimmunotherapy Cancer Medicine 2020;9:5932–5939.
光免疫療法の後に手術をしても問題は起こらない

71. Rosenburg A, Fujimura D, Okada R, Furusawa A, Inagaki H, Wakiyama H, Kato T, Choyke PL, Kobayashi H.
Real Time Fluorescence Imaging using Indocyanine Green to Assess Therapeutic Effects of Near Infrared Photoimmunotherapy in Tumor Model Mice. Molecular Imaging 2020;19:1536012120934965.

70. Nishinaga Y, Sato K, Yasui H, Taki S, Takahashi K, Shimizu M, Endo R, Koike C, Kuramoto N, Nakamura S, Fukui T, Yukawa H, Baba Y, Kaneko MK, Chen-Yoshikawa TF, Kobayashi H, Kato Y, Hasegawa Y.
Targeted Phototherapy for Malignant Pleural Mesothelioma: Near Infrared Photoimmunotherapy Targeting Podoplanin
Cells 2020 ;9(4):1019.

69. Maruoka Y, Furusawa A, Okada R, Inagaki F, Fujimura D, Wakiyama H, Kato T, Nagaya T, Choyke PL, Kobayashi H.
Combined CD44- and CD25-targeted near-infrared photoimmunotherapy to selectively kill cancer and regulatory t cells in syngeneic mouse cancer models. Cancer Immunology Research 2020 ;8(3):345-355.

制御性T細胞とがん細胞を同時に壊すと完治率が飛躍的に改善

68. Nishimura T, Mitsunaga M, Sawada R, Saruta M, Kobayashi H, Matsumoto N, Kanke T, Nakamura K.
Photoimmunotherapy targeting biliary-pancreatic cancer with humanized anti-TROP2 antibody
Cancer Medicine 2019;8(18):7781-7792.
TROP2を標的にした膵胆道がんに対する光免疫療法

67. Nakamura YA, Okuyama S, Furusawa A, Nagaya T, Fujimura D, Maruoka Y, Eclarinal PC, Choyke PL, Kobayashi H.
Near-Infrared Photoimmunotherapy through Bone
Cancer Science 2019;110(12):3689-3694.
骨を介した光免疫療法も可能

66. Okada R, Maruoka Y, Furusawa A, Inagaki F, Nagaya T, Fujimura D, Choyke PL, Kobayashi H.
The Effect of Antibody Fragments on CD25 Targeted Regulatory T Cell Near Infrared Photoimmunotherapy (NIR-PIT).
Bioconjugate Chemistry 2019;30(10):2624-2633. doi:10.1021/acs.bioconjchem.9b00547

制御性T細胞の破壊後にはIL2のCD8への結合が免疫増強のためには必要

65. Nakamura T, Mitsunaga, M, Ito K, Kobayashi, H, Saruta, M.
Cancer neovasculature-targeted near-infrared photoimmunotherapy (NIR-PIT) for gastric cancer: different mechanisms of phototoxicity compared to cell membrane-targeted NIR-PIT.
Gastric Cancer 2020;23(1):82-94.

64. Watanabe S, Noma K, Kashima H, Kato T, Urano S, Katsube R, Hashimoto Y, Ohara T, Tazawa H, Shirakawa Y, Kobayashi H, Fujiwara T.
Near-infrared photoimmunotherapy targeting cancer-associated fibroblasts reduced accelerated tumor growth in human esophageal carcinoma. Cancer Biology & Therapy 2019;20(9):1234-1248.
腫瘍浸潤性活性型線維芽細胞に対する光免疫療法で食道がんの腫瘍増殖抑制が誘導できる

63. Nagaya T, Friedman J, Maruoka Y, Ogata F, Okuyama S, Clavijo PE, Choyke PL, Allen C, Kobayashi H.
Host immunity following near infrared photoimmunotherapy is enhanced with PD-1 checkpoint blockade to eradicate established tumors Cancer Immunology Research 2019;7(3):401-413. doi: 10.1158/2326-6066.CIR-18-0546

光免疫療法はそれによる腫瘍細胞の免疫源性細胞死によって腫瘍に対する免疫を高めることができるので、チェックポイント阻害剤の効果を高めることができる

62. Siddiqui MR, Railkar R, Sanford T, Crooks DR, Eckhaus MA, Haines D, Choyke PL, Kobayashi H, Agarwal PK.
Targeting Epidermal Growth Factor Receptor (EGFR) and Human Epidermal Growth Factor Receptor 2 (HER2) Expressing Bladder Cancer Using Combination Photoimmunotherapy (PIT).
Scientific Reports 2019; 9(1): 2084.
膀胱がんに対するEGFRとHER2を同時標的にした光免疫療法

61. Sato K, Ando K, Okuyama S, Moriguchi S, Ogura T, Totoki S, Hanaoka H, Nagaya T, Kokawa R, Takakura H, Nishimura M, Hasegawa Y, Choyke PL, Ogawa M, Kobayashi H.
Photo-induced ligand release from a silicon phthalocyanine dye conjugated with monoclonal antibodies; A mechanism of cancer cell cytotoxicity after near infrared photoimmunotherapy.
ACS Central Science 2018 ;4(11):1559-1569.

光免疫療法の化学的背景:細胞膜の障害は光誘導側鎖乖離反応によっておこる

60. Nagaya T, Okuyama S, Ogata F, Maruoka Y, Choyke PL, Kobayashi H.
Near infrared photoimmunotherapy using a fiber optic diffuser for treating peritoneal gastric cancer dissemination.
Gastric Cancer 2019; 22(3): 463-472.
デイフューザー型光ファイバーを用いた胃がん腹腔内播種の光免疫療法

59. Tang Q, Nagaya T, Liu Y, Horng H, Lin J, Sato K, Kobayashi H, Chen Y.
3D Mesoscopic Fluorescence Tomography for Imaging Micro-distribution of Antibody-photon Absorber Conjugates during Photoimmunotherapy in vivo. Journal of Controlled Release 2018; 279:171-180.
3次元断層蛍光イメージングを用いた抗体IR700の腫瘍内微小分布の解析

58. Nagaya T, Okuyama S, Ogata F, Maruoka Y, Choyke PL, Kobayashi H.
Endoscopic near infrared photoimmunotherapy using a fiber optic diffuser for targeting peritoneal dissemination of gastric cancer.
Cancer Science 2018; 109(6):1902-1908.

内視鏡を介した胃癌の光免疫療法

57. Nakajima K, Kimura T, Takakura H, Yoshikawa Y, Kameda A, Shindo T, Sato K, Kobayashi H, Ogawa M.
Implantable wireless light emitting diode for near-infrared photoimmunotherapy in vivo.
Oncotarget 2018; 9: 20048-20057.
埋め込み型ワイヤレスLEDを用いた光免疫療法

56. Nagaya T, Okuyama S, Ogata F, Maruoka Y, Knapp DW, Karagiannis SN, Fazekas-Singer J, Choyke PL, LeBlanc AK, Jensen-Jarolim E, Kobayashi H. Near infrared photoimmunotherapy targeting bladder cancer with a canine anti-epidermal growth factor receptor (EGFR) antibody
Oncotarget 2018; 9: 19026-19038.

犬の膀胱がんに対する光免疫療法

55. Maruoka Y, Nagaya T, Sato K, Ogata F, Okuyama S, Choyke PL, Kobayashi H.
Near infrared photoimmunotherapy with combined exposure of external and interstitial light sources. Molecular Pharmaceutics 2018;15(9):3634-3641.
外照射と内照射の併用を行った光免疫療法

54. Okuyama S, Nagaya T, Sato, K, Ogata F, Maruoka Y, Choyke PL, Kobayashi H.
Interstitial near-infrared photoimmunotherapy: effective treatment areas and light doses needed for use with fiber optic diffusers.
Oncotarget 2018; 9: 11159-11169. doi.org/10.18632/oncotarget.24329

53. Nagaya T, Gorka AP, Nani RR, Okuyama S, Ogata F, Maruoka Y, Choyke PL, Schnermann MJ, Kobayashi H.
Molecularly Targeted Cancer Combination Therapy with Near Infrared Photoimmunotherapy and Near Infrared Photo-release with Duocarmycin-antibody Conjugate.
Molecular Cancer Therapeutics 2018; 17(3): 661-670. DOI:10.1158/1535-7163.MCT-17-0851
光免疫療法と光放出薬剤のコンビネーション治療

52. Maruoka Y, Nagaya T, Nakamura Y, Sato K, Ogata F, Okuyama S, Choyke PL, Kobayashi H.
Evaluation of early therapeutic effects after near infrared photoimmunotherapy (NIR-PIT) using luciferase-luciferin photon-counting and fluorescence imaging.
Molecular Pharmaceutics 2017; 14(12): 4628-4635.

51. Ogata F, Nagaya T, Okuyama S, Maruoka Y, Choyke PL, Yamauchi T, Kobayashi H.
Dynamic changes in the cell membrane on three dimensional low coherent quantitative phase microscopy (3D LC-QPM) after treatment with the near infrared photoimmunotherapy.
Oncotarget 2017; 8(61): 104295-104302.

50. Nagaya T, Nakamura Y, Okuyama S, Ogata F, Maruoka Y, Choyke PL, Allen C, Kobayashi H.
Near infrared photoimmunotherapy with an anti-CD44 antibody in syngeneic mouse models of oral cavity squamous cell carcinoma.
Molecular Cancer Research 2017; 15(12): 1667-1677. doi: 10.1158/1541-7786.MCR-17-0333.
CD44を標的にした免疫の正常マウスでの光免疫療法

49. Okuyama S, Nagaya T, Ogata F, Maruoka Y, Sato K, Nakamura Y, Choyke PL, Kobayashi H.
Avoiding thermal injury during near-infrared photoimmunotherapy (NIR-PIT): the importance of NIR light power density.
Oncotarget 2017; 8(68): 113194-113201.

光免疫療法は臨床の10倍以上の光を当ててもやけどなど熱に対する心配はない

48. Railkar R, Krane LS, Sanford T, Haines D, Li Q, Vourganti S, Brancato SJ, Choyke PL, Kobayashi H, Agarwal PK.
Epidermal Growth Factor Receptor (EGFR) Targeted Photoimmunotherapy (PIT) for the Treatment of EGFR expressing Bladder Cancer.
Molecular Cancer Therapeutics 2017; 16(10):2201-2214.

47. Tang Q, Nagaya T, Liu Y, Lin J, Sato K, Kobayashi H, Chen Y.
Real-time monitoring of micro-distribution of antibody-photon absorber conjugates during photoimmunotherapy in vivo.
Journal of Controlled Release 2017; 260: 154-163.
光免疫療法施行中の抗体IR700のリアルタイムの腫瘍内挙動

46. Nagaya T, Nakamura Y, Okuyama S, Ogata F, Maruoka Y, Choyke PL, Kobayashi H.
Near infrared photoimmunotherapy targeting prostate cancer with prostate-specific membrane antigen (PSMA) antibody.
Molecular Cancer Research 2017; 15(9): 1153-1162.
異なるPSMA抗体での前立腺がんの光免疫療法

45. Ito K, Mitsunaga M, Nishimura T, Saruta M, Kobayashi H, Tajiri H.
Near-infrared photochemoimmunotherapy by photoactivatable bifunctional antibody-drug conjugates targeting HER2-positive cancer
Bioconjugate Chemistry 2017; 28(5):1458-1469.

44. Nakamura Y, Nagaya T, Sato K, Okuyama S, Ogata F, Thien AT , Wong KJ, Adler S, Eclarinal P, Choyke PL, Kobayashi H.
Cerenkov radiation-induced Photoimmunotherapy with 18F-FDG
The Journal of Nuclear Medicine 2017 ;58(9):1395-1400.
FDGのポジトロンから出るチェレンコフ光でも光免疫療法が可能か

43. Ogata F, Nagaya T, Nakamura Y, Okuyama S, Maruoka Y, Choyke PL, Kobayashi H.
Near-Infrared Photoimmunotherapy: A comparison of light dosing schedules.
Oncotarget 2017;8(21):35069-35075.
光免疫療法で3時間開けて2回光を当てると一日後と同様の効果を得られる

42. Ogawa M, Tomita Y, Nakamura Y, Lee M-J, Lee S, Tomita S, Nagaya T, Sato K, Yamauchi T, Iwai H, Kumar A, Haystead T, Shroff H, Choyke PL, Trepel JB, Kobayashi H.
Immunogenic cancer cell death selectively induced by near-infrared photoimmunotherapy.
Oncotarget 2017;8(6):10425-10436. doi: 10.18632/oncotarget.14425.

光免疫療法はほとんどのがん細胞に即座に免疫原性細胞死を起こす

41. Nakamura Y, Weaver Ohler Z, Householder D, Nagaya T, Sato K, Okuyama S, Ogata F, Daar D, Hoa T, Choyke PL, Kobayashi H.
Near infrared photoimmunotherapy in a transgenic mouse model of spontaneous epidermal growth factor receptor (EGFR)-expressing lung cancer.
Molecular Cancer Therapeutics 2017;16(2):408-414. doi: 10.1158/1535-7163.MCT-16-0663.

自然発生肺がんマウスに対する光免疫療法

40. Harada T, Nakamura Y, Sato K, Nagaya T, Okuyama S, Ogata F, Choyke PL, Kobayashi H.
Near-infrared photoimmunotherapy with galactosyl serum albumin in a model of diffuse peritoneal disseminated ovarian cancer.
Oncotarget 2016; 7(48): 79408-79416.
抗体以外のタンパクを使った卵巣がん腹腔内播種に対する光免疫療法

39. Nagaya T, Nakamura Y, Sato K, Harada T, Choyke PL, Hodge JW, Schlom J, Kobayashi H.
Near infrared photoimmunotherapy with avelumab, an anti-programmed death-ligand 1 (PD-L1) antibody.
Oncotarget 2017 ; 8(5): 8807-8817.
PD-L1分子発現肺がんに対する光免疫療法

38. Nagaya T, Nakamura Y, Sato K, Harada T, Choyke PL, Kobayashi H.
Near Infrared Photoimmunotherapy of B-cell Lymphoma.
Molecular Oncology 2016; 10(9): 1404-1414. (Cover article)
B細胞性悪性リンパ腫に対する光免疫療法

37. Sato K, Sato N, Xu B, Nakamura Y, Nagaya T, Choyke PL, Hasegawa Y, Kobayashi H.
Spatially selective depletion of tumor-associated regulatory T cells with near infrared photoimmunotherapy.
Science Translational Medicine 2016 Aug 17; 8(352):352ra110.

抑制性T細胞をターゲットに光免疫療法を行うと全身の腫瘍免疫を増強できる

36. Nakamura Y, Nagaya T, Sato K, Harada T, Okuyama S, Choyke PL, Yamauchi T, Kobayashi H.
Alterations of filopodia by near infrared photoimmunotherapy: evaluation with 3D low-coherent quantitative phase microscopy.
Biomedical Optics Express 2016 ;7(7):2738-2748.
光免疫療法が細胞膜に及ぼす早期の影響を位相差顕微鏡でリアルタイム観察

35. Jin J, Krishnamachary B, Mironchik Y, Kobayashi H, Bhujwalla ZM.
Phototheranostics of triple negative breast cancer and its stem cell population Scientific Reports 2016; 6: 27871.
乳がんのがんステムセルと標的にした光免疫療法

34. Nagaya T, Nakamura Y, Sato K, Harada T, Choyke PL, Kobayashi H.
Improved micro-distribution of antibody-photon absorber conjugates after initial near infrared photoimmunotherapy (NIR-PIT)
Journal of Controlled Release 2016; 232: 1-8.
光免疫療法直後にもう一度投与した抗体は広く腫瘍の奥深くまで届く

33. Nagaya T, Nakamura Y, Sato K, Zhang Y-F, Ni M, Choyke PL, Ho M, Kobayashi H.
Near infrared photoimmunotherapy with an anti-mesothelin antibody.
Oncotarget 2016; 7(17): 23361-23369.
膵がんや卵巣がんに発現するメソセリンを標的にした光免疫療法

33. Nagaya T, Nakamura Y, Sato K, Zhang Y-F, Ni M, Choyke PL, Ho M, Kobayashi H.
Near infrared photoimmunotherapy with an anti-mesothelin antibody.
Oncotarget 2016; 7(17): 23361-23369.
膵がんや卵巣がんに発現するメソセリンを標的にした光免疫療法

32. Jing H, Weidensteiner C, Reichardt W, Zhu X, Kobayashi H, Niedermann G.
Imaging and selective elimination of glioblastoma stem cells with theranostic near-infrared-labelled CD133-specific antibodies.
Theranostics 2016; 6(6): 862-874. doi:10.7150/thno.12890

グリオブラストーマ(脳腫瘍)のがんステムセルと標的にした光免疫療法

31. Ito K , Mitsunaga M, Arihiro S, Nishimura T, Saruta M, Matsuoka M, Kobayashi H, Tajiri H.
Combination treatment with monoclonal antibodies recognizing different epitopes of human epidermal growth factor receptor 2: An assessment of phototherapeutic effect based on fluorescence molecular imaging.
Oncotarget 2016; 7(12): 14143-14152.
同じターゲット抗原の異なる部分を認識する2つの抗体を使うと光免疫療法の効果が上がる

30. Sato K, Watanabe R, Hanaoka H, Nakajima T, Choyke PL, Kobayashi H.
Comparative effectiveness of light emitting diodes (LEDs) and lasers in near infrared photoimmunotherapy.
Oncotarget 2016; 7(12): 14324-14335.
LED光源とLaser光源の光免疫療法治療効率の比較

29. Nakamura Y, Bernardo M, Nagaya T, Sato K, Harada T, Choyle PL, Kobayashi H.
MR imaging of tumor shortly after near infrared photoimmunotherapy.
Oncotarget 2016; 7(13): 17254-17264.
光免疫療法の急性期変化のMRI画像上の特徴

28. Ito K , Mitsunaga M, Arihiro S, Saruta M, Matsuoka M, Kobayashi H, Tajiri H.
Molecular Targeted Photoimmunochemotherapy for HER2-positive Human Gastric Cancer Results in Improved Treatment Outcomes In Vivo
BMC Cancer 2016; 16(1):37.

27. Ishida M, Kagawa S, Shimoyama K, Takehara K, Noma K, Tanabe S, Shirakawa Y, Tazawa H, Kobayashi H, Fujiwara T.
Neo-targeted photoimmunotherapy for peritoneally disseminated HER2-negative gastric cancer.
Molecular Cancer Therapeutics 2016; 15(3): 402-411.

標的抗原のない胃癌の腹腔内播種に対してアデノウイルスで標的分子を作って行った光免疫療法

26. Sato K, Choyke PL, Kobayashi H.
Selective cell elimination from mixed 3D culture using near infrared photoimmunotherapy technique.
Journal of Visualized Experiments 2016 Mar 14;(109). doi: 10.3791/53633.
光免疫療法手法のビデオ解説論文

25. Nagaya T, Sato K, Harada T, Nakamura Y, Choyke PL, Kobayashi H.
Near infrared photoimmunotherapy targeting EGFR positive triple negative breast cancer: Optimizing the conjugate-light regimen.
PLoS One 2015;10(8):e0136829. doi: 10.1371/journal.pone.0136829.
トリプルネガテイブ乳がんに対する光免疫療法

24. Sato K, Nagaya T, Mitsunaga M, Choyke PL, Kobayashi H.
Near infrared photoimmunotherapy for diffuse multiple lung metastases.
Cancer Letters 2015; 365(1): 112-121.
乳がんの多発肺転移に対する光免疫療法

23. Sato K, Nagaya T, Nakamura Y, Harada T, Choyke PL, Kobayashi H.
Near infrared photoimmunotherapy prevents lung cancer metastases in a murine model.
Oncotarget 2015; 6(23):19747-19758.
光免疫療法は肺転移の発生を予防的に抑えることができる

22. Hiroshima Y, Maawy A, Zhang Y, Garcia Guzman M, Heim R, Makings L, Luiken GA, Kobayashi H, Tanaka K, Endo I, Hoffman RM, Bouvet M.
Photoimmunotherapy inhibits tumor recurrence after surgical resection on a pancreatic cancer patient-derived orthotopic xenograft (PDOX) nude mouse model
Annals of Surgical Oncology 2015;22 Suppl 3: S1469-1474.

光免疫療法は膵がんの術後再発を顕著に抑える

21. Sato K, Nakajima T, Choyke PL, Kobayashi H.
Selective in vitro and in vivo cell elimination using near infrared photoimmunotherapy RSC Advances 2015; 5: 25105 - 25114.

光免疫療法は、人工臓器や生体内で狙った不要な細胞を取り除くことができる

20. Sato K, Nagaya T, Choyke PL, Kobayashi H.
Near infrared photoimmunotherapy in the treatment of pleural disseminated NSCLC: preclinical experience.
Theranostics 2015; 5(7): 698-709.
非小細胞性肺がんに対する光免疫療法

19. Maawy A, Hiroshima Y, Zhang Y, Heim R, Makings L, Garcia-Guzman M, Luiken GA, Kobayashi H, Hoffman RM, Bouvet M.
Near infra-red photoimmunotherapy with anti-CEA-IR700 results in extensive tumor lysis and a significant decrease in tumor burden in orthotopic mouse models of pancreatic cancer.
PLoS One 2015; 10(3): e0121989.
膵がんの原発に対する光免疫療法

18. Maawy A, Hiroshima Y, Zhang Y, Garcia-Guzman M, Luiken GA, Kobayashi H, Hoffman RM, Bouvet M.
Photoimmunotherapy lowers recurrence after pancreatic cancer surgery in orthotopic nude mouse models.
Journal of Surgical Research 2015;197(1):5-11.
膵がんの術後再発に対する光免疫療法

17. Shimoyama K, Kagawa S, Ishida M, Watanabe S, Noma K, Takehara K, Tazawa H, Hashimoto Y, Tanabe S, Matsuoka J, Kobayashi H, Fujiwara T.
Viral transduction of the HER2-extracellular domain expands trastuzumab-based photoimmunotherapy for HER2 negative breast cancer cells
Breast Cancer Research and Treatment 2015;149(3):597-605. DOI: 10.1007/s10549-015-3265-y
ターゲットのないがん細胞にウイルスを使った遺伝子治療で新たなターゲットを作ることができる

16. Watanabe R, Hanaoka H, Sato K, Nagaya T, Harada T, Mitsunaga M, Kim IS, Paik CH, Wu AM, Choyke PL, Kobayashi H.
Photoimmunotherapy targeting prostate-specific membrane antigen; Are antibody fragments as effective as antibodies?
The Journal of Nuclear Medicine 2015; 56(1): 140-144.
様々な形態の抗体を使った前立腺がんに対する光免疫療法

15. Sato K, Choyke PL, Kobayashi H.
Photoimmunotherapy of gastric cancer peritoneal carcinomatosis in a mouse model.
PLoS One 2014 ;9(11): e113276.
胃癌に対する光免疫療法

14. Sato K, Hanaoka H, Watanabe R, Choyke PL, Kobayashi H.
Photoimmunotherapy (PIT) in the treatment of disseminated peritoneal ovarian cancer.
Molecular Cancer Therapeutics 2015; 14(1):141-150.
卵巣がん腹膜播種に対する光免疫療法

13 Hanaoka H, Nakajima T, Sato K, Watanabe R, Harada T, Phung Y, Gao W, Kim IS, Paik CH, Choyke PL, Ho M, Kobayashi H.
Photoimmunotherapy of hepatocellular carcinoma: Targeting Glypican-3 with a YP7 anti-Glypican-3 antibody conjugate.
Nanomedicine 2015; 10(7): 1139-1147.
肝細胞癌に対する光免疫療法

12. Liang C, Nakajima T, Watanabe R, Sato K, Choyke PL, Yu C, Kobayashi H.
Real-time monitoring of hemodynamic changes in tumor vessels during photo-immunotherapy using optical coherence tomography
Journal of Biomedical Optics 2014; 19(9): 98004.

11. Nakajima T, Sato K, Hanaoka H, Watanabe R, Harada T, Choyke PL, Kobayashi H.
The effects of conjugate and light dose on photo-immunotherapy induced cytotoxicity.
BMC Cancer 2014; 14(1): 389. doi: 10.1186/1471-2407-14-389.
光免疫療法の治療効果は光のエネルギーにのみ依存する。

10. Sato K, Watanabe R, Hanaoka H, Harada T, Nakajima T, Kim IS, Paik CH, Choyke PL, Kobayashi H.
Photoimmunotherapy: Comparative effectiveness of two monoclonal antibodies targeting the epidermal growth factor receptor.
Molecular Oncology2014: 8(3); 620-632.

9. Sano K, Nakajima T, Choyke PL, Kobayashi H.
The effect of photoimmunotherapy (PIT) followed by liposomal daunorubicin in a mixed tumor model: A demonstration of the super enhanced permeability and retention (SUPR) effect after PIT.
Molecular Cancer Therapeutics2014; 13(2): 426-432.
光免疫療法と併用するとナノサイズ抗がん剤は20倍以上腫瘍に集まり、単独より高い効果を示す。

8. Ali T, Nakajima T, Sano K, Sato K, Choyke PL, Kobayashi H.
Dynamic fluorescent imaging with indocyanine green for monitoring the therapeutic effects of photoimmunotherapy.
Contrast Media and Molecular Imaging 2014; 9(4): 276-282.

7. Nakajima T, Sano K, Choyke PL, Kobayashi H.
Dual targeted photoimmunotherapy can synergistically enhance the therapeutic effects.
Theranostics 2013; 3(6): 357-365.
2つの抗体で2つのターゲットを叩くとより効率よい治療ができる(大腸がん、悪性リンパ腫)

6. Sano K, Nakajima T, Choyke PL, Kobayashi H.
Super-enhanced permeability and retention effects of nano-particle induced by the photo-immunotherapy.
ACS Nano 2013; 7(1): 717-724.

光免疫療法と併用するとナノサイズ薬品は20倍以上腫瘍に集まる。

5. Sano K, Mitsunaga M, Nakajima T, Choyke PL, Kobayashi H.
Acute cytotoxic effects of photoimmunotherapy assessed by 18F-Fluorodeoxyglucose (FDG) PET.

The Journal of Nuclear Medicine2013; 54:770-775.
光免疫療法では細胞は即座に死ぬのでFDG-PETの信号は光を当て終わった後すぐに消失する。

4. Mitsunaga M, Nakajima T, Sano K, Kramer-Marek G, Choyke PL, Kobayashi H.
Immediate in vivo target-specific cancer cell death after near infrared photoimmunotherapy.
BMC Cancer 2012; 12: 345.
光免疫療法の細胞死は瞬時に起こり生体発光で見ることができる

3. Nakajima T, Sano K, Mitsunaga M, Choyke PL, Kobayashi H.
Real-time monitoring of in vivo acute necrotic cancer cell death induced by near infrared photoimmunotherapy using fluorescence lifetime imaging. Cancer Research 2012 ;72(18) :4622-4628
光免疫療法の細胞死を蛍光寿命イメージングで観察することができる

2. Mitsunaga M, Nakajima T, Sano K, Choyke PL, Kobayashi H.
Near infrared theranostic photoimmunotherapy (PIT): Repeated exposure of light enhances the effect of immunoconjugate.
Bioconjugate Chemistry 2012; 23(3): 604-609.
光免疫療法の繰り返し治療を行うと免疫のないマウスでも7-8割治癒できる。

1. Mitsunaga M, Ogawa M, Kosaka N, Rosenburm LT, Choyke PL, Kobayashi H.
Cancer Cell-Selective In Vivo Near Infrared Photoimmunotherapy Targeting Specific Membrane Molecules.
Nature Medicine 2011; 17(12): 1685–1691.

光免疫療法の最初の開発を書いた論文(子宮がん、乳がん、大腸がん、前立腺がん)